A general one-phase Stefan problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

متن کامل

A nonlocal one-phase Stefan problem that develops mushy regions

We study a nonlocal version of the one-phase Stefan problem which develops mushy regions, even if they were not present initially, a model which can be of interest at the mesoscopic scale. The equation involves a convolution with a compactly supported kernel. The created mushy regions have the size of the support of this kernel. If the kernel is suitably rescaled, such regions disappear and the...

متن کامل

On a One-Phase Stefan Problem in Nonlinear Conduction

One and two phase Stefan problems for the linear heat equation have been the subject of many studies in the past [1, 2]. Indeed these problems have a great physical relevance since they provide a mathematical model for the processes of phase changes [3, 4]. The boundary between the two phases is a free boundary: its motion has to be determined as part of the solution. More recently the previous...

متن کامل

The Variational Inequality Approach to the One-Phase Stefan Problem

Considering the one-phase Stefan problem, we present an account of some recent mathematical results within the framework of variational inequalities. We discuss several situations corresponding to different boundary conditions and different geometries, like the exterior problem, the continuous casting model, and the degenerate case of the quasi-steady model. We develop a few continuous-dependen...

متن کامل

One-phase inverse stefan problem solved by adomian decomposition method

In this paper, the solution of one-phase inverse Stefan problem is presented. The problem consists of the reconstruction of the function which describes the distribution of temperature on the boundary, when the position of the moving interface is well-known. The proposed solution is based on the Adomian decomposition method and the least square method. (~) 2006 Elsevier Ltd. All rights reserved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly of Applied Mathematics

سال: 1970

ISSN: 0033-569X,1552-4485

DOI: 10.1090/qam/282082